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Abstract

Iterated function systems (IFS) are interesting parametric models for generating
fractal sets and functions. The general idea is to compress, deform and translate
a given set or function with a collection of operators and to iterate the procedure.
Under weak assumptions, IFS possess a unique fixed point which is in general
fractal. IFS were introduced in a deterministic context, then were generalized
to the random setting on abstract spaces in the early 1980 s. Their adaptation
to random signals was carried out by Hutchinson and Rüschendorff [9] by
considering random operators. This study extends their model with not only
random operators but also a random underlying construction tree. We show that
the corresponding IFS converges under certain hypothesis to a unique fractal
fixed point. Properties of the fixed point are also described.

PACS numbers: 02.50.−r, 05.45.Df

1. Introduction

Signals presenting scale invariance have been widely studied during the past 20 years. The
name scale invariance refers to signals not presenting any characteristic scale, each scale
playing a similar role. Applications of such signals are wide and range from biology [1] to
finance [2], and from network traffic [3] to turbulence [4]. Iterated function systems (IFS) have
received interest in image compression and decompression, where attempts are made to solve
the IFS inverse problem: identifying the parameters of an IFS whose attractor is a target image
[5]. IFS can also be used for fractal interpolation [6, 7]. The classical IFS considered in the
literature are deterministic IFS, where the object (a set, a measure, a function) is transformed
by means of deterministic operators. The formalism was first introduced on abstract sets, then
adapted to produce fractal measures and functions. Signals obtained from this procedure can
be multifractals [8]. Generalization to the random setting has previously been carried out by
Hutchinson and Rüschendorff [9], where only IFS operators are random. This study extends
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Figure 1. Shadow of a shape drawn in the sand of a Queensland beach at dusk. Credit G Decrouez.

their model by allowing more randomness. As an example of a natural shape that may be
modelled as the attractor of a random IFS, figure 1 shows the shadow of a shape drawn in the
sand of a Queensland beach.

IFS were first introduced over the space of compact subsets of R
2, usually denoted by

H(R2). This space is particularly interesting when dealing with black and white pictures.
H(R2) is generally endowed with the Hausdorff metric dH. For A and B in H(R2),

dH(A,B) = max[d(A,B), d(B,A)] (1)

where d(A,B) = max[d(x, B), x ∈ A] and d(x,A) = min[d(x, y), y ∈ B] for any x ∈ A.
Let ω : R

2 → R
2 be a contractive application with the contraction ratio s. Then

ω : H(R2) → H(R2) defined by

ω(B) = {ω(x)|x ∈ B} ∀B ∈ H(R2) (2)

is contractive in the metric space (H(R2), dH) with the contraction constant s. Now
consider a set of M contractive maps ωn with contraction ratios sn, n = 1, . . . ,M . Then
W : H(R2) → H(R2)

W(B) =
M⋃
i=1

ωi(B) (3)

is contractive in (H(R2), dH) with the contraction factor s = maxn sn [10]. In other words, the
operator W starts with an initial set B and compute its image by taking the union of contracted
and translated copies of the original set B. By completeness of the metric space (H(R2), dH),
it follows from the Banach fixed point theorem that the IFS possesses a unique fixed point
B∗, which satisfies W(B∗) = B∗. Many well-known fractal sets such as the Sierpinski gasket
are obtained from this procedure. Such attractors can also produce images close to shapes
found in nature, such as the famous example of fern leaves [10]. One can associate a tree
with this construction, which is deterministic in the present setting. For IFS with M maps, the
underlying construction tree is an M-ary tree, where each node possesses exactly M offspring,
as illustrated in figure 2, for M = 2.
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Figure 2. Underlying binary tree associated with a deterministic IFS (M = 2). Wi(B) for i = 2, 3
represents the ith iterate of W . Under mild conditions, convergence to a fixed point occurs when
the tree considered is infinite. The fixed point is then at the bottom of the tree (root).

This formalism was adapted to produce fractal measures and signals, first in a deterministic
setting. Random IFS were introduced in the 1980s on abstract mathematical sets [11, 12].
More recently, Hutchinson and Rüschendorff have randomized the construction for signals,
where operators are randomized, but the deterministic tree structure is retained. In this study
we further randomize this model, allowing a random construction tree, or random branching
process. Applications of branching processes, which started with the study of demography
of populations [13], have been applied to many areas of science and provide good models
in biology [14]. A good review of branching processes can be found in [15]. Random
cascades and measures defined on the boundary of random trees have also been widely
studied. See, for example, the works of Peyrière [16], Hawkes [17], Burd and Waymire [18],
Liu [19, 20], Mörters and Shieh [21]. Their works differ from the present study as they consider
measures defined as cascades over Galton–Watson trees, whereas we obtain functions defined
over compact intervals. However, it is important to note that the two constructions are not
completely disjoint, as fractal measures obtained from a cascade can have full support, and in
that case define a self-similar function. In general, cascades differ from IFS in that they can
have fractal support. However, IFS allow more general fixed points than cascades, since they
are not restricted to functions being increasing.

This study is based on the previous idea of iteration on a Galton–Watson tree. Its novelty
is to introduce new models for generating fractal signals using branching processes.

This paper is organized as follows. We first introduce the complete metric space of
random signals, where the fixed point of the random IFS lies. We then build the probability
space of extended Galton–Watson trees, presented in section 3. Extended trees are Galton–
Watson trees whose branches are endowed with a random operator. In section 4, we derive
precise conditions under which the IFS possess a unique fixed point and illustrate the type of
signals one can obtain with this new model. In the last section we study various properties
of the fixed point, such as conditions for it to be continuous. Furthermore, it is shown in
[10] that the fractal attractor of a deterministic IFS continuously depends on the parameters
of the IFS. We extend this result and show here, in a special case, that the moments of the
fixed point continuously depend on the probability vector of the random variable giving the
number of maps used at each iteration of the algorithm. Finally, we give empirical results on
the multifractal behaviour on the fixed point.
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2. Iterated function systems on functions

In this section, we present the model and introduce the working spaces. The random IFS
model presented in part B is referred to as a Galton–Watson IFS, referring to the random
structure of its underlying construction tree.

2.1. Deterministic IFS

Let Lp(X) be the space of p-integrable signals X → R where X is a compact subset of the
real line. ‖·‖p is the usual norm defined on Lp(X): ‖f ‖p = (

∫ |f |p dμ)1/p where μ is the
Lebesgue measure, leading to the natural metric dp defined by dp(f, g) = ‖f − g‖p where f

and g are in Lp. It is common to consider without loss of generality the case X = [0, 1].
An IFS consists of recursively applying an operator T with certain properties. Starting

with an initial function f0, we denote by T nf0 the nth iterate of T acting on f0. For a class of
operators T, the IFS converges to a function f ∗:

T nf0 → f ∗ as n → +∞ (4)

in Lp(X). f ∗ is the unique function satisfying f = Tf . That is, f ∗ is the fixed point or
attractor of the IFS associated with T. It is generally assumed that T can be decomposed into
a set of M nonlinear operators φi : R × X → R for 1 � i � M . Each φi deforms the original
signal and maps it to a subinterval Xi = �i(X) of X. Specifically,

(Tf )(x) =
M∑
i=1

φi

[
f

(
�−1

i (x)
)
, �−1

i (x))
]
1�i (X)(x) (5)

where the {�i(X)}Mi=1 are affine maps and partition X into M subintervals. 1�i (X) is the indicator
function of the interval �i(X). In (5), φi are functions of two variables. The second variable
is however optional and one can define the operator T with φi : R → R. The underlying
construction tree is an M-ary deterministic tree. Conditions of convergence of the IFS are
derived explicitly in [9] for nonlinear functions φi : R → R. The result can easily be
generalized to functions φi : R × X → R, as above.

Theorem 2.1. Suppose that �i are strict contractions with contraction factors ri < 1 for
i = 1, . . . ,M , and that φi are Lipschitz in their first variable with Lipschitz constants Si , i.e.
∀(u1, u2, v) ∈ R

2×X|φi[u1, v]−φi[u2, v]| � Si |u1−u2|. If for some p, λp = ∑M
i=1 riS

p

i < 1
and

∑M
i=1 ri

∫ |φi(0, x)|p dx < ∞, then T has a unique fixed point in Lp(X).

This is a specific case of theorem 4.1, so the proof is not given here. The conditions for
convergence are quite weak. The second condition only requires that φi must be p integrable
with respect to their second variable.

Figure 3 presents attractors of two different IFS, one continuous and one discontinuous.
Conditions for continuity are derived in section 5.1 in a more general setting.

The deterministic model acting on functions is not flexible enough to model natural
signals. This is mainly due to its deterministic self-similarity as observed in figure 3. One way
to break this pattern is to add randomness to the construction. Therefore section 2.3 defines
random IFS with random operators and a random construction tree.

2.2. Lp spaces

Before giving the definition of a Galton–Watson IFS, we need to specify the space where the
fixed point lies. Let (�,F, P ) be a probability space, then a p-integrable random process is a

4
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Figure 3. Top signal: continuous attractor of the IFS defined with the maps φ1(u, v) = s1u + v3

and φ2(u, v) = s2u + (1 − v2), where s1 = s2 = 0.75. The bottom discontinuous signal is also
obtained as the fixed point of an IFS, whose parameters are φ1(u, v) = s1u + 1 and φ2(u, v) =
s2u − 1, where s1 = 0.6 and s2 = 0.8. X = [0, 1] in both cases.

random variable f : � → Lp(X). Define

Lp = {
f : � → Lp(X) | E

[‖f ‖p
p

]
< +∞}

where E denotes expectation under P. We denote by fσ a realization of the random process
f ∈ Lp, where σ ∈ �, which will be useful in the proof of theorem 4.1. f (x) : � → R is
the random variable obtained by evaluating f at x. The norm of f ∈ Lp, p � 1, is defined as

‖f ‖∗
p = E

1
p

[‖f ‖p
p

]
. (6)

The metric d∗
p is then defined as follows: d∗

p(f, g) = ‖f − g‖∗
p. It is straightforward to

adapt the proof of the Riesz–Fisher theorem [29] to show that (Lp, d∗
p) is a Banach space.

2.3. Galton–Watson IFS

The operator T acting over the space Lp is now defined as follows:

(Tf )(x) =
ν∑

j=1

φj

[
f (j)

(
�−1

j (x)
)
, �−1

j (x))
]
1�j (X)(x) (7)

where (ν, φ1, �1, . . . , φν, �ν) is random and f (j) are iid copies of f . The �j are affine maps
and randomly partition X into ν subintervals. The contraction factor of �j is the random
variable rj , such that 0 < rj < 1 almost surely. φj are functions of two variables, Lipschitz
in their first variable, with a random Lipschitz factor Sj . ν is distributed according to a
probability vector q = (q1, q2, . . .). The underlying construction tree has therefore a random
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number of offspring at each node. Assuming that, in this construction, the random variable ν

is independent and identically distributed from one node to another, the construction tree is of
Galton–Watson type [22], hence the name of the IFS.

3. Space of extended trees

An ad hoc structure of � is needed in order to build iid copies of the signal f . We show how
to do this in the present section using extended Galton–Watson trees.

The construction of the probability space of extended Galton–Watson trees relies on
two famous theorems in measure theory: the Ionescu-Tulcea theorem and the Daniell–
Kolmogorov extension theorem. We use the first theorem to build a probability space of
the first n generations of extended trees for any finite integer n, then extend the construction
to infinite trees using the Daniell–Kolmogorov extension theorem. An element of that space
therefore consists of a realization of a Galton–Watson tree whose branches are equipped with
realizations of the IFS operators.

Ionescu-Tulcea [24]. The result of Ionescu-Tulcea relies on the concept of probability kernels.
Let (A1,A1) and (A2,A2) be two measurable spaces. A probability kernel is a function
κ2 : A1 × A2 → [0, 1] such that for all E ∈ A2, a �→ κ2(a, E) is a measurable function on
A1 and such that for all a ∈ A1, E �→ κ2(a, E) is a probability measure on (A2,A2). We
interpret κ2 as a probability distribution on (A2,A2) conditioned on state a ∈ A1 and write
it either κ2(E|a) or κ2(a, E). Let κ3 : A1 × A2 × A3 → [0, 1] be a probability measure on
(A3,A3) given we were in state (a1, a2) for ai ∈ Ai, i = 1, 2, in the previous step. Then the
kernel κ2 ⊗ κ3 defined as

(κ2 ⊗ κ3)(a1, E) =
∫ ∫

1E(b, c)κ2(a1, db)κ3(a1, b, dc) (8)

measures Borel subsets E of A2 × A3 from an initial state a1 ∈ A1. Ionescu-Tulcea lets us
chain correctly n measurable spaces (Ai,Ai ), i = 1, . . . , n, by defining a joint probability
on the product space

∏n
i=1 Ai from n probability kernels κi . The result of Ionescu-Tulcea

is then the following [24]. Let κ1 be a probability measure on (A1,A1) and for all
n � 2, κn :

(∏n−1
i=1 Ak

) × An → [0, 1] a probability kernel. Then there exists a unique
probability measure on

∏n
i=1 Ak given by

⊗n
i=1 κi , a generalization of equation (8).

Daniell–Kolmogorov [30]. The Daniell–Kolmogorov extension theorem extends a measure
defined on a sequence of finite product spaces to a measure on an infinite product space.
Let A1, A2, . . . , be a sequence of measurable spaces and μn a measure on the product space
A1 ×· · ·×An. We say that the sequence of probability measures μn forms a projective family
if μn+1(· × An+1) = μn for all n ∈ N. Daniell–Kolmogorov state that if μn forms a projective
family, then there exists a measure μ on

∏∞
i=1 Ai such that μn is equal to the projection of μ

onto
∏n

i=1 Ai .

Space of extended trees. Let (
,D, P ) be the probability space of elements of the form

δ = (ν, φ1, �1, . . . , φν, �ν).

An element of this space carries information about the node to which it is attached: it contains
the number of children of the node (random variable ν) and the operators attached to each of its
branches. The probability measure κ1 = P lets us build the sample space for first generation
of the tree, denoted by K1 = 
. We define Kj the sample space of the j th generation of the
tree by

Kj := {{δ(i)} | i = 1, . . . , Zj δ(i) ∈ 
Zj ∈ {1, 2, 3, . . .}}.
6
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Figure 4. Spaces K1, K2 and K1 × K2 with their respective probability measures κ1, κ2 and
κ1 ⊗κ2. δ ∈ K1 has two children. Conditionally on δ, only d2 ∈ K2 represented here has non-zero
measure as it is the only element composed of two families. κ2 assigns measure to each family in
d2 independently. To keep the figure simple, operators attached to the branches of the tree are not
represented.

The σ -algebra associated with Kj is

Dj = σ

( ⋃
k�1

Dk

)
= {d1 ∪ d2 ∪ · · · | di ∈ Di}, (9)

where Dk = D × · · · × D k times. In (9), note that the right-hand side does not depend on j .
This comes from the definition of Kj which is the same for all j � 2. The σ -algebra attached
to each Kj is therefore the same. Also, we need to consider the smallest σ -algebra spanned
by the union of Dk since the union of σ -algebras is not in general a σ -algebra.

The construction of κ2 supposes we know the first generation and in particular its size Z1.
For d = d1 ∪ d2 ∪ · · · ∈ D2, with dj = E

j

1 × · · · × E
j

j ∈ Dj , we define

κ2(d|Z1) =
Z1∏
i=1

P
(
E

Z1
i

)
. (10)

Sets di for i �= Z1 therefore receive a zero measure. This is illustrated in figure 4. By taking
the product of P

(
E

Z1
i

)
we ensure independence from one node of the tree to the next.

The procedure for constructing κ2 is repeated n times to build a probability measure on the
first n generations

∏n
i=1 Ki , from Ionescu-Tulcea. Then, Daniell–Kolmogorov let us extend

the measure to infinite trees since by construction
⊗n

i=1 κi forms a projective family. Let K be
the infinite product space, K its σ -algebra and κ the probability distribution over this space.

Definition 3.1. (K,K, κ) is the probability space of extended Galton–Watson trees.

By construction, extended trees are Galton–Watson trees whose branches are marked with
random operators. We use classical notation to label nodes and branches of the tree: let ∅ be
the root of the tree and ν∅ be the number of branches rooted at ∅. Then each node coming
from the root is denoted by i, for i = 1, . . . , ν∅. The second generation of the tree is denoted

7
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by ij for 1 � j � νi . More generally, a node is an element of U = ⋃
n�0 N

∗n and a branch is
a couple of nodes (u, uj) where u ∈ U and j is a strictly positive integer. Lastly, we consider
Tu(k) the subtree of k ∈ K rooted at u: Tu(k) = {v | v ∈ U and uv ∈ k}. By construction,
the random variables Ti are independent and identically distributed (equation (10)).

To be consistent with the fact that the fixed point lies at the root of its construction tree,
we write ν∅ for ν in (7) for the remainder of this paper.

4. Existence and uniqueness of a fixed point

This section makes precise the conditions under which the Galton–Watson IFS defined in
equation (15) possesses a unique fixed point.

Theorem 4.1. Let (K,K, κ) be the space of extended trees and define Lp using (�,F, P ) =
(K,K, κ). If Eκ

∑ν∅
j=1 rj

∫ |φj (0, x)|p dx < +∞ for some 1 < p < +∞, where rj is the
contractive factor of �j with 0 < rj < 1 almost surely, each φj (., .) is a.s. Lipschitz in
its first variable, with Lipschitz constant Sj and λp = E

∑ν∅
j=1 rjS

p

j < 1, where E denotes
the expectation under κ , there exists a unique function f ∗ which satisfies f ∗ = Tf ∗ in Lp.
Moreover, for all f0 ∈ Lp(X),

d∗
p(T nf0, f

∗) � λ
n/p
p

1 − λ
1/p
p

d∗
p(f0, Tf0) (11)

which tends to 0 as n → +∞.

Proof. The proof is in two steps. We first need to check that Lp is closed under T. Next, we
have to show that T is contractive in the complete metric space (Lp, d∗

p). The Banach fixed
point theorem will ensure the existence and uniqueness of a limit function in Lp.

Let f ∈ Lp. We make explicit the construction of iid copies of f ∈ Lp. Using notation of
section 2.2, write fk for the realization of f at point k ∈ K , then define f

(j)

k by f
(j)

k := fTj (k).

Since the random variables Tj are iid, so are the functions f
(j)

k .

First step. Let f ∈ Lp. We want to show that Tf ∈ Lp, or equivalently E
∫

X
|(Tf )(x)|p dx <

+∞. To this end, first note that in the expression (7) of Tf , the indicator function partitions
X into disjoint subintervals, so that the absolute value of the sum equals the sum of absolute
values. Thus

E

∫
X

|(Tf )(x)|p dx = E

ν∅∑
j=1

∫
�j (X)

∣∣φj

[
f (j)

(
�−1

j (x)
)
, �−1

j (x))
]∣∣p dx.

Since �j are affine with contraction factor 0 < rj < 1, its inverse is also affine with almost
everywhere existing Jacobian, and we can perform the change of variable y = �−1

j (x). We
bound the Jacobian of the transformation by rj . E

∫
X

|(Tf )(x)|p dx is therefore bounded
above by

E

ν∅∑
j=1

rjE

[ ∫
X

|φj [f (j)(y), y]|p dy|φj

]
. (12)

In (12), we have also used the law of total probability: E(·) = E[E(· | {ν∅, {φj , �j }})] where
the second expectation is conditioned on the IFS parameters. Terms depending on ν and �j

can be put outside the second expectation, leaving us with a term which only depends on φj ,
hence (12). Note that the term in the inner expectation does no longer depend on the �i’s
and is just d

∗p
p (φj [f (j), Id], 0) after conditioning on the IFS parameters. Id stands for the

8
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identity function and 0 is the zero function. Using the triangle inequality, and the fact that
for any reals x and y we have |x + y|p � 2p(|x|p + |y|p) it follows that E

∫
X

|(Tf )(x)|p dx is
bounded by

2p
E

ν∅∑
j=1

rjd
∗p
p

(
φj

[
f (j)

κ , Id
]
, φj [0, Id]

)
+ 2p

E

ν∅∑
j=1

rjd
∗p
p (φj [0, Id], 0). (13)

Using the Lipschitz property of the φj , the first term of (13) is smaller than

2p
E

ν∅∑
j=1

rjS
p

j d∗p
p

(
f (j)

κ , 0
)
,

which is bounded since f ∈ Lp. The second term of (13) is proportional to
E

∑ν∅
j=1 rj

∫ |φj (0, x)|p dx and is finite by assumption. E
∫

X
|(Tf )(x)|p dx < +∞ follows.

Second step. We now prove the contractive property of T under the conditions of theorem 4.1.
Take f and g in Lp and consider d

∗p
p (Tf, T g). As in step 1, we expand expressions of Tf

and T g and swap the sum and absolute value, we then use the law of total probability and
perform the change of variable y = �−1

j (x), whose Jacobian is bounded by rj . We obtain

d∗p
p (Tf, T g) = E

∫
|(Tf )(x) − (T g)(x)|p dx

� E

ν∅∑
j=1

rjE
∗
[ ∫

X

|φj [f (j)(y)), y] − φj [g(j)(y), y]|p dy

]

where E
∗ = E[· | {ν∅, {φi, �i}}]. Lastly, we use the Lipschitz property of the nonlinear random

maps φj to conclude that

d∗p
p (Tf, T g) � λpd∗p

p (f, g),

where the definition of λp is given in the theorem statement. Under the assumption λp < 1,
the contractive property follows and from the Banach fixed-point theorem there exists a unique
function f ∗, attractor of the Galton–Watson IFS. Moreover,

d∗p
p (T nf0, f

∗) � λpd∗p
p (T n−1f0, f

∗)

which leads to

d∗
p(T nf0, f

∗) � λn/p
p d∗

p(f0, f
∗).

Now using the triangle inequality

d∗
p(f0, f

∗) � d∗
p(f0, Tf0) + λ1/p

p d∗
p(f0, f

∗)

so that

d∗
p(T nf0, f

∗) � λ
n/p
p

1 − λ
1/p
p

d∗
p(f0, Tf0),

which concludes the proof of the theorem. �

To illustrate, we present in figure 5 a realization of the fixed point of a certain IFS and its
mean. The IFS parameters are detailed in the figure caption.

The theorem not only states that starting from an initial function the IFS converges in Lp

to a unique fixed point under the metric d∗
p but also that the convergence is exponential. It

follows that the convergence of T nf0 towards f ∗ is almost sure. To show this, let ε > 0, then

P
(
dp

p (T nf0, f
∗) > ε

)
� Ed

p
p (T nf0, f

∗)
ε

� Cλn
p,

9
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Figure 5. A realization of the fixed point (a) and its mean (b). φj are decomposed as follows:
φj (x, t) = sj x + Xζj (t) for j = 1, . . . , ν, where X is normally distributed with mean 1 and
variance 0.25. When ν = 1, s1 = 0.6 and ζ1(t) = t (1 − t). For ν = 2 we define s1 = 0.6,

s2 = 0.7, ζ1(t) = t3, ζ2(t) = 1 − t2 and for ν = 3 we have s1 = 0.6, s2 = 0.7, s3 = 0.3, ζ1(t) =
t4, ζ2(t) = (t + 1)(1 − 0.75t3) and ζ3(t) = 0.5(1 − t2). ν takes the values 1, 2 or 3 with
probabilities 0.2, 0.3 and 0.5 for the first two figures. The bottom figure is the mean obtained with
the probabilities 0.2, 0.2 and 0.6.

where

C = d
∗p
p (f0, Tf0)

ε
(
1 − λ

1/p
p

)p .

It follows that ∑
n�1

P
(
dp

p (T nf, f ∗) > ε
)

< ∞

and from the Borel–Cantelli lemma we have P-almost sure convergence.
f ∗ is the unique fixed point for which f ∗ = Tf ∗ in Lp but there may be some other

f 0 �= f ∗ such that the law of f 0 equals the law of Tf 0. The following result can be proven
in the same way as Hutchinson and Rüschendorff [9].

10
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Corollary 4.2. The distribution of f ∗ is the unique distribution which satisfies f ∗ d= Tf ∗,

where
d= denotes equality in distribution.

The idea is to define a new space of probability distributions of elements of Lp and a
new metric over this space which lead to a complete metric space. Then one can prove that
the operator T seen at the distribution level is contractive in this space and therefore admits a
unique fixed point.

5. Properties of the fixed point

We now consider two properties of the fixed point. First, we derive conditions under which
paths are a.s. continuous. Then, we look at the moments of the fixed point and show that under
certain assumptions, moments of the attractor continuously depend on the probability vector
q. This fact is suggested by observing figure 5 where a small change in q induces ‘small’
variations in the mean of the fixed point.

5.1. Continuity of the sample paths

The results for the Galton–Watson IFS are a straightforward generalization of continuity results
in the deterministic setting.

Proposition 5.1. X = [a, b]. Let α be the unique random fixed point of φ1(·, a) and β the
unique random fixed point of φν∅(·, b): φ1(α, a) = α and φν∅(β, b) = β. Assume that α and
β are the same for all possible realizations of φ1 and φν∅ . If φi(β, b) = φi+1(α, a) a.s. for all
i ∈ {1, . . . , ν∅ − 1} and all the operators considered are continuous, then f ∗ has continuous
paths and f ∗(a) = α and f ∗(b) = β (a.s.).

Proof. We first note that f ∗(a) and f ∗(b) are respectively fixed points of φ1 and φν∅ :

f ∗(a) = φ1
[
f ∗(�−1

1 (a)
)
, �−1

1 (a)
] = φ1[f ∗(a), a]

f ∗(b) = φν∅
[
f ∗(�−1

ν∅ (b)
)
, �−1

ν∅ (b)
] = φν∅[f ∗(b), b].

Those equalities have to remain true whatever ν∅ is, which is realized under the assumption
of proposition 5.1.

We start the iteration with a continuous function f , and we consider Tf . Let
�i[a, b] = [ai−1, ai] for i ∈ {1, . . . , ν∅} and a0 = a, aν∅ = b almost surely. We only
have to prove the continuity at the points ai of the interval [a, b] since it is the only place
where Tf can be discontinuous, and d∗

p is complete on the set of continuous functions [9].
Therefore, if the nth iterate of T is continuous, the limit process also belongs to the space of
continuous functions.

f ∗(ai) can be expressed in two different ways as the point ai is at the intersection of
�i[a, b] with �i+1[a, b]:

f ∗(ai) = φi

[
f ∗(�−1

i (ai)
)
, �−1

i (ai)
] = φi[f

∗(b), b] = φi[β, b]. (14)

We can show in a similar way that f ∗(ai) = φi+1[α, a]. Under the condition of the
proposition the continuity of f ∗ at points ai follows. �

With this model, it is possible to obtain continuous paths or random processes everywhere
discontinuous by adjusting the IFS parameters. Allowing only one discontinuity by not joining
two operators φν∅,i and φν∅,i+1 at the random point ai will result in an everywhere discontinuous
fixed point. A realization of a continuous fixed point is represented in figure 5.

11
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5.2. Continuous dependency w.r.t. q

The continuity of the moments of the fixed point with respect to q is suggested in figure 5. This
observation is related to that made by Barnsley in [10] where the attractor of a deterministic
IFS is continuously varying with respect to the IFS parameters, leading to applications in
image synthesis. We prove the result here for the model presented in [23], with deterministic
maps and a random tree.

Consider the set of deterministic maps

{{φk,1, . . . , φk,k, �k,1, . . . , �k,k}}k=1,2,....

Given ν∅ = j , then apply {φj,1, . . . , φj,j , �j,1, . . . , �j,j }. φk,j and �k,j may differ for different
values of k, j = 1, . . . , k. The operator T becomes

(Tf )(x) =
ν∅∑

j=1

φν∅,j
[
f (j)

(
�−1

ν∅,j (x)
)
, �−1

ν∅,j (x))
]
1�ν∅ ,j (X)(x). (15)

Lipschitz factor of φν∅,j is Sν∅,j and the contraction factor of �ν∅,j is denoted by rν∅,j . Since
the operators attached to the branches of the tree are the same for a given number of offsprings,
to one realization of the tree is associated one and only one realization of the fixed point.

Theorem 5.2. Suppose conditions of theorem 4.1 hold. Let f ∗ ∈ Lp be the fixed point
of a Galton–Watson IFS, bounded number of offspring and deterministic maps of the form
φ(u, v) = su + ζ(v), where 0 � s < 1 and ζ is a nonlinear function. Suppose that
λr = E

∑ν
j=1 rjS

r
j < 1 for r = 1, . . . , p. Then the rth moment of f ∗ continuously varies with

respect to the probability generating vector q, for r = 1, . . . , p.

Proof. We prove the theorem by recurrence on r, for r = 1, . . . , p. The first step of the
proof shows that the continuity property holds for the mean of the fixed point. In the second
step, we generalize it to any higher order integer moment. Let ϒ be the space of probability
vectors

ϒ =
{

p = (pi, i ∈ N
∗)

∣∣∣∣∣
∑

i

pi = 1

}

where N
∗ := {1, 2, . . .}. This space is endowed with the metric l(p, q) = ∑

i |pi − qi |.
First step. By definition of Lp, Epf

∗
p ∈ L1, if we denote by f ∗

p the fixed point of the IFS
with probability vector p and by Ep the expectation under κp, the probability measure defined
on K with the probability generating vector p. We adopt this notation in this section to
emphasize on p. Note that by changing the probability vector, we change the measure κp on
the space of extended Galton–Watson trees. Therefore, if we now call f ∗

q the fixed point of the
same IFS with probability generating vector q, the expectation with respect to this new
measure is different from Ep and we denote it by Eq (expectation under the new measure κq).
The continuity of the mean of the fixed point with respect to the generating vector follows if
we show the continuity of the map ψ : ϒ → L1 which associates with each probability vector
the mean of the fixed point of the Galton–Watson IFS. Let p ∈ ϒ , we want to show that for
all ε > 0, there exists η > 0 such that

∀ q ∈ ϒ l(p, q) � η ⇒ d1(Epf
∗
p , Eqf

∗
q ) � ε. (16)

12
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Let ε > 0 and p ∈ ϒ . We first use the fact that f ∗ and Tf ∗ have the same distribution,
therefore the same mean

d1(Epf
∗
p , Eqf

∗
q ) =

∫ ∣∣∣∣∣ Ep

ν1∑
j=1

φν1,j

[
f ∗

p ◦ �−1
ν1,j

, �−1
ν1,j

]
1�ν1 ,j (X)

− Eq

ν2∑
j=1

φν2,j

[
f ∗

q ◦ �−1
ν2,j

, �−1
ν2,j

]
1�ν2 ,j (X)

∣∣∣∣∣,
where κp(ν1 = k) = pk and κq(ν2 = k) = qk . We omit the variable x in the integrand
to keep the notation clear. By conditioning with respect to ν1 and ν2, the right-hand side
becomes

∫ ∣∣∣∣∣
∑
i�1

pi

i∑
j=1

Epφi,j

[
f ∗

p ◦ �−1
i,j , �−1

i,j

]
1�i,j (X) −

∑
i�1

qi

i∑
j=1

Eqφi,j

[
f ∗

q ◦ �−1
i,j , �−1

i,j

]
1�i,j (X)

∣∣∣∣∣.
The sums can be taken outside the integral. By setting y = �−1

i,j (x) and bounding the Jacobian
by ri,j , where ri,j is deterministic here as we consider non-random maps, d1(Epf

∗
p , Eqf

∗
q ) is

less than

∑
i,j

ri,j

∫
|piEpφi,j [f ∗

p (y), y] − qiEqφi,j [f ∗
q (y), y]| dy.

To go further, a particular form for the φi,j is required. We consider the case when
they are pure contractions in their first variable and are nonlinear in their second variable:
φi,j (u, v) = si,j u + ζi,j (v). The Lipschitz factor of φi,j is si,j in this case. Using the triangle
inequality of |·| it follows that d1(Epf

∗
p , Eqf

∗
q ) is bounded by

∑
i,j

ri,j

[ ∫
si,j |piEpf

∗
p − qiEqf

∗
q | + |pi − qi‖ζi,j (y)| dy

]
.

The term |piEpf
∗
p − qiEqf

∗
q | can be further bounded above by |Epf

∗
p ‖pi − qi | + qi |Epf

∗
p −

Eqf
∗
q | by adding and subtracting qiEpf

∗
p and using the triangle inequality. Suppose p and q

are chosen such that l(p, q) � η. We have

d1(Epf
∗
p , Eqf

∗
q ) � η

∑
i,j

ri,j si,j

∫
|Epf

∗
p |

+
∑
i,j

qiri,j si,j

∫
|Epf

∗
p − Eqf

∗
q | + η

∑
i,j

ri,j

∫
|ζi,j (y)| dy.

In the first term of the right-hand side,
∫ |Epf

∗
p | < M < ∞ since Epf

∗
p ∈ L1. We have a

bounded number of maps so
∑

i,j ri,j si,j is also bounded. In the second term,
∫ |Epf

∗
p −Eqf

∗
q |

is the distance between Epf
∗
p and Eqf

∗
q and

∑
i,j qiri,j si,j is exactly the contraction factor

λ1(q) < 1 of the map T. Since the map p �→ ∑
piri,j si,j is linear, it follows that the distance

between λ1(q) and λ1(p) is small for p sufficiently close to q. Therefore λ1(q) � 1 − εp

for some small εp > 0. Finally, the third term is bounded by assumption. It follows that

13
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d1(Epf
∗
p , Eqf

∗
q ) is smaller than

η

εp

⎡
⎣M

∑
i,j

ri,j si,j +
∑
i,j

ri,j

∫
|ζi,j (y)| dy

⎤
⎦ := η

εp

γ.

Set η = εp

γ
ε, it follows that d1(Epf

∗
p , Eqf

∗
q ) � ε.

Second step. We now show that the previous result holds for the rth moment of the fixed point,
as long as r � p. To fix ideas, let us start with the second-order moment. First note that f ∗2

is distributed like (Tf ∗)2. Then, proceeding as before we bound d1(Epf
∗2
p , Eqf

∗2
q ) by∑

i,j

ri,j

∫ ∣∣piEpφ
2
i,j [f ∗

p (y), y] − qiEqφ
2
i,j [f ∗

q (y), y]
∣∣ dy.

By developing the square, the following terms appear: s2
i,j f

∗2, ζ 2
i,j (y) and 2si,j ζi,j (y). It

follows that

d1
(
Epf

∗2
p , Eqf

∗2
q

)
�

∑
i,j

ri,j

[ ∫
s2
i,j

∣∣piEpf
∗2
p − qiEqf

∗2
q

∣∣
+ 2si,j ζi,j (y)|piEpf

∗
p − qiEqf

∗
q | + ζ 2

i,j (y) dy

]
.

Since for all r � p, f ∈ Lp(X) ⇒ f ∈ Lr (X), f ∗ is in L2 and the last term of the
right-hand side is bounded above by assumption. The second term of the right-hand side is
also smaller than η times some constant, as noted previously in step 1 of the proof. In the first
term, we proceed as in step 1 and it follows that the right-hand side is less than some constant
times η. The continuity follows.

When dealing with the rth order moment, the term φr
i,j [f ∗(y), y] appears in the bounding

factor. Expanding the expression, the terms
∫ ∣∣piEpf

∗j
p − qiEqf

∗j
q

∣∣ for 1 � j � r − 1 show
up, all less to some constant times η by the recurrence hypothesis. The conclusion follows
by noting that the triangle inequality can be applied as before to the term

∫ |piEpf
∗r
p −

qiEqf
∗r
q |. �

5.3. Test for multifractality

Fractal processes are by construction highly irregular. Information about the local fluctuations
of a process X(t) is made precise with the definition of the Hölder exponent at a specific time
t = t0. The process X is said to belong to Ch

t0
if there is a polynomial Pt0 such that

|X(t) − Pt0(t)| � K|t − t0|h
in a neighbourhood of t0. The largest value H of h such that X ∈ Ch

t0
is the Hölder exponent

of X at t = t0 [25]. Monofractal processes have a constant local Hölder exponent along
their sample paths. In opposition, multifractals possess a richer structure. Their Hölder
exponent behaves erratically with time: each interval of positive length exhibit a full range
of different exponents. In practice, it is not possible to estimate the evolution of the Hölder
exponent with time. Instead, multifractal processes are described by their Hausdorff spectrum
D(h), which gives the size (Hausdorff dimension) of sets with a given exponent h. The
spectrum cannot be observed precisely in practice and alternative methods for its estimation
have been proposed, giving birth to the multifractal formalism. D(h) is usually estimated via
the Legendre transform of a partition function ζ(q), obtained as a power law behaviour of
multiresolution quantities. Jaffard, Lashermes and Abry have proposed an estimator of ζ(q)
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Figure 6. Estimation of the partition function ζ(q) of the fixed point of a Galton–Watson IFS
using wavelet leaders. The parameters of the IFS are given in the figure caption 5, with ν taking
values 1, 2 or 3 with probabilities 0.2, 0.3 and 0.5 respectively. The partition function is obtained
by averaging 100 estimations. 95% confidence intervals are also plotted.

using wavelet leaders [26]. The Legendre transform of ζ(q) provides in general an upper
bound of the Hausdorff spectrum of X

D(h) � inf
q �=0

(1 + qh − ζ(q)).

Consider the polynomial expansion of ζ(q) = c1q + c2q
2/2 + c3q

3/6 + · · · . When cp = 0
for all p � 2, ζ(q) is linear with q and the Hausdorff spectrum degenerates to a single
point: the process is monofractal. Any departure from a linear behaviour is characteristic of
multifractals. Wendt and Abry have designed a test to decide whether cp = 0 or not [27]. In
particular, the case p = 2 permits to conclude between a mono and multifractal process. The
null hypothesis cp = cp,0 (H0) is tested versus the two sided alternative cp �= cp,0. The test
statistic is therefore

T = cp − cp,0.

The distribution of the test statistic T under the null hypothesis is unknown in general and is
estimated using non-parametric bootstrap techniques. From the empirical distribution, one
can design an acceptance region T1−α = [tα/2, t1−α/2] where tα is the α quantile of the null
distribution. In the present study, we set α = 0.1 and cp,0 = 0. We refer the reader to [27] for
further details about the test statistics.

Consider the Galton–Watson IFS presented in figure 5 with ν taking values 1, 2 or 3 with
probabilities 0.2, 0.3 and 0.5. We simulate 100 realizations of the fixed point, each of length
212 and estimate the partition function using wavelet leaders. The wavelet coefficients are
computed with Daubechies wavelets with two vanishing moments and the scale of analysis
ranges from j1 = 3 to j2 = 12. The partition function presented in figure 6 is obtained
by averaging 100 estimations of ζ(q). It clearly appears nonlinear, which suggests the
multifractal behaviour of the fixed point. Also, in the multifractality test previously described,
H0 is rejected 99% of time for p = 2, confirming nonlinear shape of ζ(q). Those observations
indicate the existence of a class of Galton–Watson fixed points which are multifractals. This
result motivates a further study in which one could derive conditions on the IFS parameters in
order to obtain multifractal fixed points.
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6. Conclusion

This study extends the model proposed by Hutchinson and Rüschendorff by adding more
randomness to it, considering random operators on a random underlying construction tree.
The strict self-similarity observed in attractors of deterministic IFS is a drawback when
modelling natural signals. Adding randomness gives visually more interesting models and it
would be interesting to consider parameter estimation problems on Galton–Watson IFS. To
start with, one could give operators a particular form and estimate the offspring distribution of
the random tree.

Further theoretical properties of the fixed point also need to be carried out, starting with
its multifractal analysis. The cascade nature of IFS lets us imagine a non-trivial multifractal
spectrum of the fixed point, intuition confirmed by the simulations performed in the previous
section. Existing results for deterministic IFS on functions [8] and for random IFS on measures
[28] motivate this study.
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